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1. INTRODUCTION

In this paper, employing properties of complex polynomials, we give a
construction of the topological index (winding number). In previous papers,
[1] and [2], a theory of complex functions based upon polynomial methods
was developed for continuously differentiable functions. This construction
enables absorbing into the polynomial approach the methods of G. T.
Whyburn [5], thus allowing the handling of the general case where no condi-
tion of continuity is placed on the derivative.

Let K be the (open) complex plane. For § >0, z,€ K, set U, (8) =
{zeK |z —z| <8}, B,0) ={z€K;|z—2z|=28}, U@ = Uy o),
U = U(1), B(8) = By(5), and B = B(l).

Let H be a compact subset of K. Then C(H) denotes the space of continuous
functions on H into K with the maximum norm, and C’'(H) denotes the
family of all elements of C(H) which never vanish on H. For [ C(B), set
11l = max{| f(z)]; z € B}, || flmin = min{| f(2)]; z € B}. .

Let T be the family of all functions of C(B) of the form Y _, a,z*,
n=20,1,... Finally, set 7' = T n C'(B).

2. THE INDEX

Let T, be the family of all real-valued elements of 7. Clearly, T, is a
subalgebra of C(B) containing the constant function 1. Let z, , z, € B, z; + z,,
andset,forzeB, P2) = |z—z,? = (z—2))Z — Z) = —zz7 ' + 2 — %,z
Then Pe T, and P(z,) = | z, — z, |> > 0. Thus, T, separates points of B.
Hence, from the Stone-Weierstrass Theorem, the closure T, of T, is the
space of all real-valued elements of C(B). Whence 7 = C(B).
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For f(z) = 3", auz* € T, set Ly(f) = a,. Then (cf. [2, Theorem 3.1}
L, is a bounded linear functional on 7T, and hence L, can be extended uniquely
to a bounded linear functional L on the closure T = C(B) of T. For

f@) =", aizt e T', set i(f) = L(zf '(2)/f (2)).

THEOREM 1. Let P be a polynomial such that P(z) + O throughout B.
Then 7(P) is the number of zeros of P in U.

Proof. We may assume that P(z) is not a constant. Let P(z) =
Az — z,) (2 — zy), s0 that P'(z)/P(z) = 3 (z — z;) L for z€ B.

Letybeazeroof P.If ye U, thenforze B, z(z — y) ' = (1 — yzH) ! =
1+ Y5 ymz=" and, hence, L(z(z — y)™Y) = 1. If ye K — U, then for z € B,
2z — )t = —zy Ul — W]t = —zy 1Y, 2ty = ¥ 2"y~ and, hence,
L(z(z — y)™) = 0. Thus #(P) = L(zP'(2)/P(z)) = X L(z(z — z)™Y) is the
number of k’s with z, € U; consequently, #(P) is the number of zeros of P
in U.

THEOREM 2. Forf,geT":

1. #(f) is an integer.
2. #(fg) = A(f) + #(g) and #(flg) = A(f) — A(g).
3. | f(2) — g@) < |f(2)| for all z € B implies i(f) = #(g).

Proof. Seth = fg. Then k'[h = (f'|f} + (g'[g) and Ai(h) = L(zf"(2)/f(2)) +
L(z¢'(2)/g(2)) = #(f) + #(g). Similarly, #(f]g) = #(f) — #(g).

For some integer p, there exists a polynomial P such that P(z) = z?f(z).
Then #(P) = #(z?) + A(f) = pf(z) + #(f) = p + #(f). From Theorem 1,
#(f) is the integer #(P) — p.

For t€[0, 1], ze B, set h(z) = h(t, z) = (1 — t) f(z) + tg(z). Under the
hypothesis of 3, for all such ¢ and z,

LA, 2)] < 1 f@) — t1f2) — 8@ = [ f@) — | f(2) — g(2)] > 0.

Forte[0, 1], z€ B, set @,(z) = D(t, z) = zh,/(2)/h(z). Then Dy(2) = zf'(2)/f (2)
and @,(z) = zg'(z)/g(z) for z € B. For t € [0, 1], set w(t) = 7i(hy) = L(zD(2)).
Since L is a bounded linear operator, w is continuous. Since w(¢) is an integer,
w is a constant and 7(f) = w(0) = w(l) = 7(g).

THEOREM 3. Let fe C'(B). Then there is a unigue integer n(f) (the
topological index of f) such that Pe T’ and | f(z) — P(2)] < 47| f(2)| for
all z € B imply n(f) = #(P).

Proof. Let ¢ = || f|min > 0. By the Stone-Weierstrass theorem, there
exists Q€T such that | O — f]| < a/4. Set n(f) = #(Q). For all ze B,



A POLYNOMIAL APPROACH TO TOPOLOGICAL ANALYSIS. IiI 435

| OQ(z) — f(2)] <4716 <471 f(z)l. Now Qe T, since, if for some z € B,
0(z) = 0, we would have | f(z)] = | Q(2) — f(2)] <[f(2)l.

Now for z€ B, 41| f(2)| > | f(2)l — | Q(2)] and so, | Q(2)| > (3/4)| f(2)I;
thus, if Pe T and | f(z) — P(z)| << 47*| f(2)| throughout B, then

| P(2) — Q)] < | P(2) — f(D)| + | f(2) — Q(2)]
<A@+ 4@ < @M 1)) < Q@)

From Theorem 2, #(P) = #(Q) = n(f).

THEOREM 4. For f, g € C'(B):

L. n(fg) = n(f) + n(g) and n(f]g) = n(f) — n(g).
2. | f(2) — g(2)] < |f()| for all z € B implies n(f) = n(g).
Proof. Let P, Q € T’ be such that for all z € B,

[P —f(@) <97 f(@ and  [Q(z) —g(2)| <97 g()]

Then for all ze B, 91| g(z)] > | Q(2)] — | g(2)i and | Q(2)] < (10/9) | g(2)];
thus

| P(2) Q(z) — f(2) 8(2)] < | P(2) Q(2) ~ Q) f(2)| + | Q(2) f(2) — f(2) &(2)|
< (10/9) [g@)| - 971 [ f(D] + [ f(2)] - 97 | g(2)]
= (19/81) | f(2)] - | g < 471 [ [ (2) g(2)].

Hence, from Theorem 3, a(fg) = n(PQ), n(f) = n(P), n(g) = n(Q). From
Theorem 2, n(PQ) = n(P) + n(Q). Thus,

n(fg) = n(PQ) = n(P) + n(Q) = n(f) + n(g).

Also n(f) = n(g(flg)) = n(g) + n(f]g) and, so, n(fjg) = n(f) — n(g).
Assume now that for all ze B, |f(z)] — |f(z) — g(z)] > 0. Set

o=3 11l —1f—glllmm > 0. Then |f(z)— g@)| <|f@)| — 30 for
all zeB. Choose P,QeT’ such that || P — f| < min(c, 41| f|lmin),
| @ — gli < min(o, 47| g |lmin). Then from Theorem 3, n(P) = n(f) and
n(Q) = n(g). Thus, for every ze B, o > | f— P|| = |f()| — | P(2)| and
| f(2)] — o < | P(2)]; hence

| P(z) — Q@) <1 P(2) — f@ + | /(2 — 8@ + | g(2) — Q)]
SIP—=fli+11f@ — 3]+ Q —gll
<o+ [If@) —30]l+ o =1f@)— 0o <]|P@).

From Theorem 2, n(P) = n(Q), and thus n(f) = n(P) = n(Q) = n(g).
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Let f, g € C'(B). We recall that f is homotopic to gin C'(B) (f=~g) if
there exists a continuous function 4 on [0, 1] X B into K — {0} such that
for all z e B we have hy(z) = h(0, z) = f(z) and h(z) = K(1, z) = g(2).

THEOREM 5. Let f, g€ C'(B) and let f >~ g. Then n(f) = u(g).

Proof. 1Let h be a continuous function on [0, 1] x B into K — {0} such
that #, = f and 4, = g. Then o« = min{| A(¢, 2)|;0 <<t < 1,ze B} > 0. Let
8 >0 be such that |[h, — A, || <« whenever se[0,1], t€[0,1] and
|s — t| < 3. For such s and ¢, since | h(z) — hy(z)| < o < | A(z)| for all
z € B, we have, from Theorem 4, n(h,) = n(h;). Thus, by suitably subdividing
[0, 1], we conclude that n(f) = n(hy) = n(hy) = n(g).

THEOREM 6. If fe C'(U), then n(f) = 0.

Proof. Fortel0, 1], ze B, set h(t, z) = f(tz). Then hy(2) = h(1, z) = f(2)
and /hy(z) = A0, z) = f(0) for all zeB. Hence, from Theorem 35,
n(f) = n(hy) = n(hy) = L(zhy'(z)/I(z)) = L(0) = 0.

3. CONTINUITY OF THE DERIVATIVE

THEOREM 7. Let fe C(U) be differentiable at z,€ U, and let f'(z,) # 0.
Then there exists 8,0 << 8 << 1 — | z, |, such that:

12U, ®), 2 # 2 imply £(2) # £).
2. H = f(U,[(9)) contains a disc about f(z,).

Proof. Let 0 < < 27'| f'(z,)|. Then there exists 8§, 0 << 8 <1 — | z, |,
such that for ze V = U, (8) — {z,}, we have

If(2) = fz9] - (z — z9) — fi(zp)l <.
Whence, for ze V,
Nz —zg| > 1f(2) — f(z0) — f'(zo)z — 2p)l
= f(@) |z —zo| — 1 f(2) — f(20)l
> 2|z —z| — [ f(2) — f(2)l;
so that | f(2) — f(zo)l > m |z — zo | > 0; thus f(2) # f(2y)-
Let «e U"d) and set A(z) = f(zo + 28) — f(zy) — « for ze U. Then,
for ze B,
| h(z) — f'(z0) 28 | = | f(zg + 28) — f(2o) — @ — ['(zp) 23 |
< | f(zo + 28) — f(z0) — f(zo) 28 | + | |
<lz8 | +lal K<nlz8] + 18 =208 < |f'(z0) 20 1.
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Hence, from Theorem 4, n(h) = n(f'(z,) 6z) = n(f'(zy) 6) -+ n(z) = 1. From
Theorem 6, h¢ C'(U), and thus there exists an x € U such that A(x) = 0.
Whence f(zy + x6) — f(zy) — « = 0 and « - f(zy) = f(z, + x8) € H. Thus
Uszp(n8) € H.

THEOREM 8 (see Whyburn [5]). Let fe C(U) and let f'(2) exist and be
zero throughout a set V C U. Then f(V) has zero planar measure.

THEOREM 9. Let D be a countable subset of U and let f € C(U) be differen-
tiable throughout U — D. Then for every ze U, | f(2)| < M = | 1|

Proof. Assume the contrary. Then for some z,e U — D, | f(zo) > M.
Set o= f(zy). Let 0 <c <2 a|— M), ¢#f'(z,), and set fy(z) =
f(@) + cz for every zeU. Then fy(z)) #0, My=|lfo!l <M+ ¢, and
[ fo@) = |la+czol > o]l —c>M+c = M,. Set o = fo(z,) and let
0 <8 <|wa|— M,.ThenS, = f(U,(5) N f(U)) is a neighborhood of z, .
By Theorem 7, f(S,) contains a (nonempty) open set W.

Set V={ze U — D, f)(z) =0}. By Theorem 8, fy(¥) has zero planar
measure. Since fo(D) is countable, A4 = f(V) f(D) has zero planar
measure and, thus, W — A4 is not empty. Let S € W — 4. Then, for every
xe H=f;*B), fy/(x) # 0. By Theorem 7, the points of H are isolated.
Since H is closed, it is finite. Let z, ,..., z; be the (distinct) points of H, set

0z) = [fo(2) — Bz — z) = (z — z)] for zeU — H,
and

0(z;) = fo' @)z — z1) (2 — 2i)(Z — Zip) (2 — 24)]
for i=1,..,k.

For such an i, f,'(z;) # 0 and, thus, 8 € C'(U). From Theorems 1, 4, and 6,

MAE) — B) =m0z — 2) (2 — 20) = n(®) + 3. n(z — 2) = k >0,

For te [0, 1], z€ B, set h(t, z) = (1 — t) fy(z) — B. Then

log | — Bl <lap— Bl <8 <|og| — M, and | B — M, > 0;
thus | h(t,z)] = | B| — 1 fy2) = |B| — M, >0 for te[0,1], ze B. But
then, from Theorem 5, n(f(z) — B) = n(hy) = n(h;)) = n(B) = 0.

THEOREM 10. Let 8 > 0, set H = U(1 + 8), and let fe C(H) be differen-
tiable throughout U(1 + 8). Then f' is continuous at 0. Thus differentiability
of a function in an open subset of K implies continuity of the derivative there.
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Proof. Let n > 0. Then there exists §,, 0 < 8, < 8, such that s, r e H,
|s —t] <8imply | f(s) — f(?)] < /2. Let xc U(S,). Foreveryze U, z # 0,
set h,(z) = [f(x + 2) — f()]z7 — [f (2) — f(0)]z". Let h,(0) = f'(x) — f'(0).
For each ze B, |(x + z) — z | < §, and, hence, | f(x + z) — f(x)| < 7/2;
thus, by Theorem 9,

| f'(x) = f(0)] = | ha(0)] < |l Al
= max{| f(x + z) — f(x) — f(z) + f(0); ze B}
< max{| f(x + z) — f(2)}; z€ B} + | f(x) — f(0)|
<(/2) + (9/2) = 7.

Similar arguments were used by Porcelli and Connell [3], and Read [4]
to obtain power series expansions, etc. Two further developments employing
the Stone—Weierstrass theorem were given by the present author, [1] and [2].

4. FURTHER DEVELOPMENT OF THE THEORY

In this section we study the fundamental homotopy group of K — {0}
and the relation between the local and the global degrees of a mapping.

THEOREM 11. Let f, g€ C'(B). Then f~ 27, where q = n(f). Moreover,
n(f) = n(g) implies f ~ g.

Proof. By Theorem 3, there exists an f, € T” such that | fo(z) — f(2)] <
4711 f(z)| for all z € B, and n(fy) = n(f). Setting A(t, x) = tf(z) + (1 — 1) f(2)
for te[0, 1], ze B, we have that Az, x) % 0 for all t€[0, 1], x € B, and,
hence, f, > f.

For some integer p, there exists a polynomial P such that P(z) = z?f(z)
for ze B. There exist A(£0), 2y ,oer Zk s Zpy1 5eees Z, such that P(z)_=
A(z — z;) = (z — z), and such that z, ,..., zz e U and zgyy 5., 2z, € K — U.
Forte[0, 1], z< B, set

hiz) = W(t,z) = A(z — tz)) " (2 — 12g) - (12 — Zpeya) (12 — 2 ) 277,

Then for z € B, 1(z) = fy(2) and ho(z) = az"~?, where a = A(—2z341) =+ (—2z)
Now, forze B, tc[0,1], xe U, ye K — U, we have
lz—tx| 21— |x] >0
and

jtz—y|=]yl—1>0.
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Thus, k(t, z) = Oforall t € [0, 1], z € B. Hence, f ~ f, = h; >~ hy = oz =~ 2¢,
where ¢ = k — p; from Theorem 5, n(f) = n(«z?) = g. Similarly, g o~ z*9,
and hence, if n(f) = n(g), we have f~ z") ~ g,

By Theorem 4, n is a homomorphism of the multiplicative group C'(B)
onto the additive group Z of integers. By Theorems 5 and 11, for £, g € C'(B),
n(f) = n(g) if and only if f~~ g. Thus the family M of homotopy classes
of C’'(B) is isomorphic to Z.

This result is analogous to the theorem stating that the fundamental
homotopy group G of K — {0} is isomorphic to Z. The latter follows readily
from the first if one shows that the operation of multiplying homotopy
classes of G is independent of whether it is derived from pointwise multipli-
cation of functions or from juxtapositioning of functions. The last statement
follows from the fact that, by the first result, all homotopy classes of G are
determined by functions of the form €27, pe Z, 0 < § < 1.

An fe C(U) will be called admissible if f(z) # 0 throughout B and if all
zeros of fin U are isolated.

THeEOREM 12. Let fe C(U), and let zy€ U be an isolated zero of f. Then
there exists a unique integer p = u(f, z,) such that if 0 <p <1 — |z, | and
if 2 U, (p) — {20} implies f(2) # O, then p = n(f (zy + p2)).

Proof. Let p be as in the theorem, and let o satisfy, too, the same condi-
tions. For te[0,1], ze B, set hfz) = h(t,z) = f(zo + [(1 — t) p + to] 2).
Then h(t,z) 0 whenever te[0,1] and ze B. Therefore, f(z, + pz) =
hy = hy = f(zy + 02), and from Theorem 5, n(h,) = n(h,).

u(f, z,) is the (local) degree of f at z, .

For an admissible fe C(U), we set u(f) = 2 sp=0 (S, Zo). The integer
p(f) is the (glocal) degree of fin U.

THEOREM 13. Let f(e C(U)) be admissible. Then u(f) = n(f).

Proof. Let z, be a zero of fin U and set p = u(f, z,). We shall modify f
in a neighborhood S of z; in such a way that on some subneighborhood
S of S, f will take the form A(z — zy)? if p > 0, and the form A(Z — z,)~?
if p <0, where 4 £ 0.

For some 8, 0 <& <1 — |z, ze U, (8) — {z,} implies f(z) # 0. Now
p = n(f(z, 4 6z)), and by Theorem 11 there exists a continuous function @
on [0,1] X B into K — {0} such that @(1, z) = f(z, + 8z) and (0, z) = z?,
for ze B. Set V = U, (8) — U, (5/2), and

02)=DPQ2|z—z) |6~ 1, (z—zp)|z—zy|7Y) for zeV.
Then, for z € B, (3),
0(2) = (p(19 8_1(2 - ZO)) = f(Z)’
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and for z ¢ BZO(S/Z),

0(z) = D0, 2z — z) 6) = [267(z — )}
= 2787(z — z,)? = 27P8%(Z — Z,) "

For z e U, we define fi(z), a modification of f(z), to be:

f(2), if z¢U, (3);

0(z), if zeV;
(z — z4)P278~7, if p>0 and zeU,(8/2);
(E —z)72%», if p<0 and zeU,(5/2).

If p 20, then u(fy, 2) = n(z?) = p = p(f; 2y). If p <0, then u(fy, z)) =
n(z=?) = n(z?) = p = (Y, z,). If f vanished also at some z; (€ U, # z,), we
modify f; in a neighborhood of z, , as we did above for fand z, . We continue
in this fashion, corresponding to all remaining zeros of fin U. As a result
we obtain an admissible function g € C(U), having the following properties:

(1) g(2) = f(2) throughout B and, consequently, n(f) = n(g).

(2) Ifze U, then g(z) = 0 if and only if f(z) = 0.

3) u(f, z) = pu(g, z) whenever z € U and f(z) = 0.

(4) There exists g,e C'(U) such that, for every zeU, g(z) =
80(2) " H@)=0,0-ut0,0>0(Z — X)? 50,00, <o(Z — %) 72

Let x€ U. Then y = X 1e K — U, and from Theorem 3, n((z — x)?) = p
and n(z — y) = 0. By Theorem 4, if p < 0, n((Z — Xy ?) = —p - n(Z — X) =
—p - n((y — 2){(xz)) = p. By Theorems 4 and 6,

n(f) = n(g) = n(g,) + > n((z — x)7)

Fle)=0,p=ulg,x) =0

+ Y n((Z —x)"= ) wfx)=pl)

F(2)=0,p=(g,2) <0 Fla)=0

COROLLARY (a “Rouché theorem”). Let f, g (¢ C(U)) be admissible, and
let | f(2) — g(2)| < |f(2)| throughout B. Then u(f) = p(g).

Indeed, by Theorems 13 and 4, u(f) == n(f) = n(g) = p(g).
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