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1. INTRODUCTION

In this paper, employing properties of complex polynomials, we give a
construction of the topological index (winding number). In previous papers,
[1] and [2], a theory of complex functions based upon polynomial methods
was developed for continuously differentiable functions. This construction
enables absorbing into the polynomial approach the methods of G. T.
Whyburn [5], thus allowing the handling of the general case where no condi
tion of continuity is placed on the derivative.

Let K be the (open) complex plane. For 0 > 0, Zo E K, set V z (0) =
o

{z E K; I z - Zo I < o}, B z (0) = {z E K; I Z - Zo I = o}, V(o) = Vo(o),o
V = V(1), B(o) = Bo(o), and B = B(1).

Let H be a compact subset ofK. Then C(H) denotes the space ofcontinuous
functions on H into K with the maximum norm, and C(H) denotes the
family of all elements of C(H) which never vanish on H. For IE C(B), set
IIII1 = max{1 f(z)l; Z E B}, 1I/IImin = min{1 f(z)l; z EB}.

Let T be the family of all functions of C(B) of the form L~n akzk,
n = 0, 1,.... Finally, set T' = Tn C(B).

2. THE INDEX

Let To be the family of all real-valued elements of T. Clearly, To is a
subalgebra of C(B) containing the constant function I. Let Z1 , Z2 E B, Z1 =Ie Z2 ,

and set, for z E B, P(z) = I Z - Zl 1
2 = (Z-Zl)(2 - 21) = -Zl=-l + 2 - 21Z.

Then P E To and P(Z2) = I Z2 - Zl 1
2 > 0. Thus, To separates points of B.

Hence, from the Stone-Weierstrass Theorem, the closure To of To is the
space of all real-valued elements of C(B). Whence l' = C(B).
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For fez) = L~n akzk E T, set Lo(f) = ao . Then (cf. [2, Theorem 3.1])
Lo is a bounded linear functional on T, and hence Locan be extended uniquely
to a bounded linear functional L on the closure T = C(B) of T. For
fez) = L:n akzk E T', set fi(f) = L(zf'(z)/f(z».

THEOREM 1. Let P be a polynomial such that P(z) ¥= ° throughout B.
Then fi(P) is the number of zeros of P in U.

Proof We may assume that P(z) is not a constant. Let P(z) =
a(z - Zl) ... (z - zm), so that P'(z)/P(z) = L~ (z - Zk)-l for z E B.

Let y be a zero of P. If y E U, then for z E B, z(z - y)-l = (1 - yz-l)-l =
1 + L~ ynz-n and, hence, L(z(z - y)-l) = 1. If Y E K - V, then for z E B,
z(z - y)-l = -Zy-l[l - (Z/y)]-l = -Zy-l L~ zny-n = L~ zny-n and, hence,
L(z(z - y)-l) = 0. Thus fi(P) = L(zP'(z)/P(z» = L~ L(z(z - Zk)-I) is the
number of k's with Zk E U; consequently, fi(P) is the number of zeros of P
in U.

THEOREM 2. For f, gET':

1. fi(f) is an integer.

2. fi(fg) = fi(f) + fi(g) and fief/g) = fi(f) - fi(g).

3. Ifez) - g(z)1 < If(z)l.for all z E B implies fi(f) = fi(g).

Proof Seth =fg. Thenh'/h = (f'/I) + (g'/g) and fi(h) = L(zf'(z)/f(z» +
L(zg'(z)/g(z» = fi(f) + fi(g). Similarly, fi(f/g) = fiU) - fi(g).

For some integer p, there exists a polynomial P such that P(z) = zpf(z).
Then fi(P) = ii(zP) + fi(f) = pfi(z) + fi(f) = P + ii(f). From Theorem 1,
fi(f) is the integer fi(P) - p.

For t E [0, 1], z E B, set ht(z) = h(t, z) = (1 - t)f(z) + tg(z). Under the
hypothesis of 3, for all such t and z,

I h(t, z)1 ~ If(z)1 - t Ifez) - g(z)1 ;? If(z)1 - Ifez) - g(z)1 > 0.

For t E [0,1], z E B, set (/>t(z) = (/>(t, z) = zht'(z)/ht(z). Then (/>o(z) = zf'(z)/f(z)
and (/>1(Z) = zg'(z)/g(z) for z E B. For t E [0, 1], set wet) = fi(h t) = L(z(/>iz».
Since L is a bounded linear operator, w is continuous. Since wet) is an integer,
w is a constant and fi(f) = w(o) = w(l) = fi(g).

THEOREM 3. Let fE C'(B). Then there is a unique integer n(f) (the
topological index ofI) such that PET' and Ifez) - P(z)I < 4-1 If(z)/ .for
all Z E B imply nU) = fi(P).

Proof Let a = IIfllmin > 0. By the Stone-Weierstrass theorem, there
exists Q E T such that II Q - .fll < a/4. Set nU) = fi(Q). For all Z E B,
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1 Q(z) - f(z)[ < 4-1a ~ 4-1
I f(z)l. Now Q E T', since, if for some z E B,

Q(z) = 0, we would have 1 f(z)1 = I Q(z) - f(z)1 < 1 f(z)l·
Now for zE B, 4-1 If(z)[ > If(z)1 - I Q(z)1 and so, [ Q(z) I > (3/4)1 f(z)l;

thus, if PET' and I fez) - P(z)1 < 4-1 If(z)1 throughout B, then

I P(z) - Q(z)1 ~ I P(z) - f(z)1 + [f(z) - Q(z)1
< 4-1 If(z)1 + 4-1 I f(z)1 < (3/4) 1f(z)1 < Q(z).

From Theorem 2, fi(P) = n(Q) = n(f).

THEOREM 4. For f, g E C(B):

1. n(fg) = n(f) + neg) and n(f/g) = n(f) - neg)·

2. I fez) - g(z)1 < I f(z)[ for all z E B implies n(f) = neg)·

Proof Let P, Q E T' be such that for all z E B,

I P(z) - f(z)[ < 9-1 If(z)1 and [ Q(z) - g(z)1 < 9-1
1 g(z)l·

Then for all zE B, 9-1 1g(z) I > I Q(z)1 - I g(z)1and [ Q(z)[ < (10/9) Ig(z)[;
thus

I P(z) Q(z) - fez) g(z) I ~ I P(z) Q(z) - Q(z)f(z)1 + I Q(z)f(z) - fez) g(z) I
~ (10/9) 1g(z) I . 9-1 If(z)1 + 1 f(z)1 . 9-1 Ig(z)[

= (19/81) I f(z)[ . 1g(z) I < 4-1 I fez) g(z)l.

Hence, from Theorem 3, n(fg) = n(PQ), n(f) = n(P), neg) = n(Q). From
Theorem 2, n(PQ) = n(P) + n(Q). Thus,

n(fg) = n(PQ) = n(P) + n(Q) = n(f) + neg).

Also n(f) = n(g(f/g)) = neg) + n(f/g) and, so, n(f/g) = n(f) - neg).
Assume now that for all z E B, I f(z)1 - 1fez) - g(z) I > o. Set

a = 3-1 111fl - If - g Illmin > O. Then If(z) - g(z) I ~ If(z)1 - 3a for
all z E B. Choose P, QE T' such that liP - fll < min(a, 4-1 1Ifllmin),
II Q - gil < min(a, 4-1 II g Ilmin). Then from Theorem 3, n(P) = n(f) and
n(Q) = neg). Thus, for every z E B, a> Ilf - P II ;;?- If(z)1 - I P(z)1 and
If(z)[ - a < I P(z)I; hence

I P(z) - Q(z)1 ~ I P(z) - f(z)1 + Ifez) - g(z)1 + Ig(z) - Q(z) I
~ II P -fll + [If(z)1 - 3a] + II Q - gil
< a + [[f(z)1 - 3a] + a = If(z)1 - a < I P(z)[.

From Theorem 2, n(P) = n(Q), and thus n(f) = n(P) = n(Q) = neg).
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Let 1, g E C'(B). We recall that f is homotopic to gin C'(B) (f~ g) if
there exists a continuous function h on [0, 1] X B into K - {a} such that
for all z E B we have ho(z) = h(O, z) = 1(z) and h1(z) = h(l, z) = g(z).

THEOREM 5. Let 1, g E C'(B) and let f ~ g. Then n(f) = n(g).

Proof Let h be a continuous function on [0, 1] x B into K - {a} such
that ho = f and hI = g. Then lX = min{1 h(t, z)l; °:(; t :(; 1, z E B} > 0. Let
o> ° be such that II h s - ht II < lX whenever s E [0, 1], t E [0, 1] and
I s - t I < o. For such sand t, since 1hs(z) - hb)1 < lX :(; I ht(z)1 for all
z E B, we have, from Theorem 4, n(hs) = n(ht). Thus, by suitably subdividing
[0, 1], we conclude that n(f) = n(ho) = n(h1) = n(g).

THEOREM 6. !ffE C'(U), then n(f) = 0.

Proof For t E [0,1], z E B, set h(t, z) = 1(tz). Then h1(z) = h(l, z) = 1(z)
and ho(z) = h(O, z) = 1(0) for all z E B. Hence, from Theorem 5,
n(f) = n(h1) = n(ho) = L(zho'(z)jh(z» = L(O) = 0.

3. CONTINUITY OF THE DERIVATIVE

THEOREM 7. Let fE C(U) be differentiable at Zo E U, and let 1'(zo) ¥= 0.
Then there exists 0, 0 < 0 < 1 - I ZO I, such that:

1. z E Uz (0), z =I- Zo imply 1(z) =I- 1 (zo)'o

2. H = 1(Uz (0» contains a disc about 1(zo).
o

Proof Let °< 'Y/ < 2-1 11'(zo)l. Then there exists 0, 0< 0 < 1 - I ZO I,
such that for z E V = Uz (0) - {zo}, we have

o

I[f(z) - 1(zo)] . (z - ZO)-1 - 1'(zo)I < 7].

Whence, for z E V,

7] I z - Zo I > 11(z) - 1(zo) - 1'(zo)(z - zo)[

;? 11'(zo)1. 1z - Zo I - 11(z) - 1(zo)1

> 27] I z - Zo 1- 11(z) - 1 (Zo)1,

so that 11(z) - f(zo) I > 7] I z - Zo I > 0; thus 1(z) ¥= 1(zo)·
Let lX E U('Y/0) and set h(z) = 1(zo + zo) - 1(zo) - lX for z E U. Then,

for z E B,

Ih(z) - 1'(zo) zo I = 11(zo + zo) - 1(zo) - lX - 1'(zo) zo I
:(; I1(zo + zo) - 1(zo) - 1'(zo) z8 I + I ex I
:(; 1') I zo I + I lX I :(; 7] I zo I + 7]0 = 27]0 < 11'(zo) z8 I.
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Hence, from Theorem 4, n(h) = n(f'(zo) DZ) = n(f'(zo) D) + n(z) = 1. From
Theorem 6, h rf. C(V), and thus there exists an x E V such that hex) = O.
Whence f(zo + XD) - f(zo) - cx = 0 and cx + f(zo) = f(zo + XD) E H. Thus
Vf(z ,(7JD) c::; H.o

THEOREM 8 (see Whyburn [5]). Let fE C(V) and let 1'(z) exist and be
zero throughout a set V c::; V. Then f (V) has zero planar measure.

THEOREM 9. Let D be a countable subset of V and letfE C(V) be differen
tiable throughout V-D. Then for every z E V, [f(z)1 ~ M = Ilfll.

Proof Assume the contrary. Then for some Zo E V - D, I f(zo)[ > M.
Set cx = f(zo)' Let 0 < c < 2-1(1 cx I - M), c =F 1'(zo), and set fo(z) =
fez) + cz for every z E V. Then fo'(zo) oF 0, Mo = lifo II ~ M + c, and
Ifo(zo) I = I cx + cZo I> I cx 1- c > M + C? Mo. Set CXo =fo(zo) and let
o< D< I CXo I - Mo. Then So = f-1(Va (D) (If(V)) is a neighborhood of zo.o
By Theorem 7,j(So) contains a (nonempty) open set W.

Set V = {z E V - D;fo'(z) = O}. By Theorem 8, foW) has zero planar
measure. Since fo(D) is countable, A = foW) U fo(D) has zero planar
measure and, thus, W - A is not empty. Let fJ E W - A. Then, for every
x E H = fo1(fJ), fo'(x) oF O. By Theorem 7, the points of H are isolated.
Since H is closed, it is finite. Let Zl ,... , Zk be the (distinct) points of H, set

and

O(z) = [fo(z) - fJ]/[(z - Zl) ... (z .- Zk)] for ZE V - H,

O(Zi) = fO'(Zi)/[(Z - Zl) ... (z - Zi-1)(Z - Zi+l) ... (z - Zk)]

for i = 1,... , k.

For such an i, fO'(Zi) oF 0 and, thus, 0 E C(V). From Theorems 1,4, and 6,

k

n(fo(z) - fJ) = n(O(z)(z - Zl) ... (z - Zk)) = n(O) + L n(z - Zi) = k > O.
i~l

For t E [0, 1], z E B, set h(t, z) = (l - t)fo(z) - fJ. Then

I CXo I - I fJ I ~ I CXo - fJ I < D< I CXo I - Mo and I fJ I - Mo > 0;

thus Ih(t, z)1 ? I fJ I - Ifo(z) I ? I fJ I - Mo > 0 for t E [0,1], z E B. But
then, from Theorem 5, n(fo(z) - fJ) = n(ho) = n(h1) = n(fJ) = O.

THEOREM 10. Let D> 0, set H = V(l + 0), and letfE C(H) be differen
tiable throughout V(l + D). Then l' is continuous at O. Thus differentiability
of a function in an open subset of K implies continuity of the derivative there.
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Proof Let YJ > O. Then there exists 00 , 0 < 00 < 0, such that s, t E H,
Is - t I < 00 imply If(s) - f(t)1 < YJ/2. Let x E U(oo). For every zED, Z 7'=- 0,
set h,,(z) = [f(x + z) - f(X)]Z-l - [fez) - f(O)]Z-l. Let h,,(O) = rex) - 1'(0).
For each z E B, I(x + z) - z I < 00 and, hence, I f(x + z) - f(x)1 < YJ/2;
thus, by Theorem 9,

Il'(x) - 1'(0)1 = I h",(O) I :( II hI)) II
= max{1 f(x + z) - f(x) - fez) + f(O)I; z E B}

:( max{1 f(x + z) - f(z)l; z E B} + If(x) - f(O) I
< (YJ/2) + (YJ/2) = YJ.

Similar arguments were used by Porcelli and Connell [3], and Read [4]
to obtain power series expansions, etc. Two further developments employing
the Stone-Weierstrass theorem were given by the present author, [I] and [2].

4. FURTHER DEVELOPMENT OF THE THEORY

In this section we study the fundamental homotopy group of K - {O}
and the relation between the local and the global degrees of a mapping.

THEOREM 11. Let J, g E C'(B). Then 1 '" zq, where q = n(f). Moreover,
n(f) = n( g) implies1~ g.

Proof By Theorem 3, there exists an 10 E T' such that l.fo(z) - f(z)[ <
4-1 If(z)1 for all z E B, and n(fo) = n(f). Setting h(t, x) = tfo(z) + (1 - t)f(z)
for t E [0, I], z E B, we have that h(t, x) 7'=- 0 for all t E [0, I], x E B, and,
hence, 10 '" f

For some integer p, there exists a polynomial P such that P(z) = zPJo(z)
for z E B. There exist A( 7'=-0), Zl , ... , Zk , Zk+l ,... , Zk such that P(z) =o _
A(z - Zl) ... (z - Zk ), and such that Zl ,... , Zk E U and Zk+l ,... , Zk E K - U.o 0

For t E [0, 1], z E B, set

ht(z) = h(t, z) = A(z - tz1) ... (z - tzk) . (tz - Zk+l) ... (tz - Zk
o
) z-p.

Then for z E B,h1(z) = .fo(z) and ho(z) = azk - P , where a = A(-Zk+l) ... (-ZkJ
Now, for z E B, t E [0, 1], x E U, Y E K - D, we have

I z - tx 1~ 1 - I x I > 0,

and

I tz - y I ~ Iy I - 1 > O.
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Thus, h(t, z) =1= °for all t E [0, 1], z E B. Hence,f '" fo = hI '" ho = azq '" zq,
where q = k - p; from Theorem 5, n(f) = n(azq) = q. Similarly, g '" zn(g),
and hence, if n(f) = neg), we have f '" zn(f) '" g.

By Theorem 4, n is a homomorphism of the multiplicative group C(B)
onto the additive group Z of integers. By Theorems 5 and 11, forf, g E C(B),
n(f) = neg) if and only if f '" g. Thus the family M of homotopy classes
of C(B) is isomorphic to Z.

This result is analogous to the theorem stating that the fundamental
homotopy group G of K - {a} is isomorphic to Z. The latter follows readily
from the first if one shows that the operation of multiplying homotopy
classes of G is independent of whether it is derived from pointwise multipli
cation of functions or from juxtapositioning of functions. The last statement
follows from the fact that, by the first result, all homotopy classes of G are
determined by functions of the form e2PiS, p E Z, °~ B~ 1.

AnfE C((J) will be called admissible if fez) =1= °throughout B and if all
zeros off in U are isolated.

THEOREM 12. Let f E CeU), and let Zo E U be an isolated zero off Then
there exists a unique integer p = fL(f, zo) such that if°< p ~ 1 - I Zo I and
if z E Uzo(p) - {zo} implies fez) =1= 0, then p = n(f(zo + pz».

Proof Let p be as in the theorem, and let a satisfy, too, the same condi
tions. For t E [0, 1], z E B, set ht(z) = h(t, z) = f(zo + [(1 - t) p + tal z).
Then h(t, z) =1= °whenever t E [0, 1] and z E B. Therefore, f(zo + pz) =

ho '" hI = f(zo + az), and from Theorem 5, n(ha) = n(hp).

fL(f, zo) is the (local) degree off at Zo .
For an admissible f E C(U), we set fL(f) = Lf(zo)~O fL(f, zo). The integer

fL(f) is the (glocal) degree off in U.

THEOREM 13. Letf(E CeU» be admissible. Then fL(f) = n(f).

Proof Let Zo be a zero off in U and set p = fL(f, zo). We shall modify j
in a neighborhood S of Zo in such a way that on some subneighborhood
So of S, f will take the form A(z - zo)P if p ;;:: 0, and the form A(z - zo)-P
if p < 0, where A =1= 0.

For some 0, °< 0 ~ 1 - I Zo I, z E Uz (0) - {zo} implies fez) =F o. Nowo
p = n(f(zo + oz», and by Theorem 11 there exists a continuous function ([J

on [0,1] X B into K - {o} such that <P(1, z) = f(zo + oz) and ([J(O, z) = zP,
for z E B. Set V = Uz (0) - Uz (0/2), ando 0

B(z) = <P(2 I z - Zo I0-1 - 1, (z - zo) I z - Zo 1-1) for z E V.

Then, for z E Bz (0),
o

B(z) = ([J(1, 0-I(Z - zo» = fez),
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and for Z E Bz(812),
o

LELAND

8(z) = ct>(0, 2(z - Zo) 8-1) = [28-1(z - zoW

= 2P8-p(z - zo)P = 2-p8p(z - zo)-p.

For z E U, we define .fo(z), a modification of1 (z), to be:

1(z), if z if: Uzo (8);

8(z), if z E V;

(z - zo)P2P8-p,

(z - zo)-P2-p8p,

if p ~ 0

if p < 0

and

and

Z E Uzo(812);

z E Uz/812).

If p ~ 0, then /L(fo , zo) = n(zP) = p = /L(f, zo). If p < 0, then /L(fo , zo) =
n(z-P) = n(zP) = p = /L(f, zo). Iff vanished also at some ZI (E U, =1= zo), we
modifyfo in a neighborhood of ZI ,as we did above forfand zo. We continue
in this fashion, corresponding to all remaining zeros of f in U. As a result
we obtain an admissible function g E C(U), having the following properties:

(1) g(z) = 1(z) throughout B and, consequently, n(f) = n(g).

(2) If z EO U, then g(z) = 0 if and only if1(z) = O.

(3) /L(f, z) = /L(g, z) whenever z E U and1(z) = O.

(4) There exists go E C'(U) such that, for every z EO U, g(z) =
go(z) . IIf(x)~o'P~/L(g.x)?;oo(z - x)P IIf(x)~o.1J~/L(g.xko(Z - x)-p.

Let x EO U. Then y = X-I E K - U, and from Theorem 3, n((z - x)P) = p
and n(z - y) = O. By Theorem 4, ifp < 0, n((z - x)-P) = -p . n(z - x) =
-P . n((y - z)/(xz)) = p. By Theorems 4 and 6,

n(f) = n(g) = n(go) + L n((z - x)P)
flx)~O.p~/L(g.x) ?;oO

+ L n((z - x)-P) = L /L(f, x) = /L(f).
f(x)~O.1J~(g.x)<0 f(x)~O

COROLLARY (a "Rouche theorem"). Let f, g (E C(U)) be admissible, and
let I1(z) - g(z) I < 11(z)1 throughout B. Then /L(f) = /L(g).

Indeed, by Theorems 13 and 4, /L(f) = n(f) = n(g) = /L(g).
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