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1. INTRODUCTION

In this paper, employing properties of complex polynomials, we give a
construction of the topological index (winding number). In previous papers,
[1] and [2], a theory of complex functions based upon polynomial methods
was developed for continuously differentiable functions. This construction
enables absorbing into the polynomial approach the methods of G. T.
Whyburn [5], thus allowing the handling of the general case where no condi­
tion of continuity is placed on the derivative.

Let K be the (open) complex plane. For 0 > 0, Zo E K, set V z (0) =
o

{z E K; I z - Zo I < o}, B z (0) = {z E K; I Z - Zo I = o}, V(o) = Vo(o),o
V = V(1), B(o) = Bo(o), and B = B(1).

Let H be a compact subset ofK. Then C(H) denotes the space ofcontinuous
functions on H into K with the maximum norm, and C(H) denotes the
family of all elements of C(H) which never vanish on H. For IE C(B), set
IIII1 = max{1 f(z)l; Z E B}, 1I/IImin = min{1 f(z)l; z EB}.

Let T be the family of all functions of C(B) of the form L~n akzk,
n = 0, 1,.... Finally, set T' = Tn C(B).

2. THE INDEX

Let To be the family of all real-valued elements of T. Clearly, To is a
subalgebra of C(B) containing the constant function I. Let Z1 , Z2 E B, Z1 =Ie Z2 ,

and set, for z E B, P(z) = I Z - Zl 1
2 = (Z-Zl)(2 - 21) = -Zl=-l + 2 - 21Z.

Then P E To and P(Z2) = I Z2 - Zl 1
2 > 0. Thus, To separates points of B.

Hence, from the Stone-Weierstrass Theorem, the closure To of To is the
space of all real-valued elements of C(B). Whence l' = C(B).
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For fez) = L~n akzk E T, set Lo(f) = ao . Then (cf. [2, Theorem 3.1])
Lo is a bounded linear functional on T, and hence Locan be extended uniquely
to a bounded linear functional L on the closure T = C(B) of T. For
fez) = L:n akzk E T', set fi(f) = L(zf'(z)/f(z».

THEOREM 1. Let P be a polynomial such that P(z) ¥= ° throughout B.
Then fi(P) is the number of zeros of P in U.

Proof We may assume that P(z) is not a constant. Let P(z) =
a(z - Zl) ... (z - zm), so that P'(z)/P(z) = L~ (z - Zk)-l for z E B.

Let y be a zero of P. If y E U, then for z E B, z(z - y)-l = (1 - yz-l)-l =
1 + L~ ynz-n and, hence, L(z(z - y)-l) = 1. If Y E K - V, then for z E B,
z(z - y)-l = -Zy-l[l - (Z/y)]-l = -Zy-l L~ zny-n = L~ zny-n and, hence,
L(z(z - y)-l) = 0. Thus fi(P) = L(zP'(z)/P(z» = L~ L(z(z - Zk)-I) is the
number of k's with Zk E U; consequently, fi(P) is the number of zeros of P
in U.

THEOREM 2. For f, gET':

1. fi(f) is an integer.

2. fi(fg) = fi(f) + fi(g) and fief/g) = fi(f) - fi(g).

3. Ifez) - g(z)1 < If(z)l.for all z E B implies fi(f) = fi(g).

Proof Seth =fg. Thenh'/h = (f'/I) + (g'/g) and fi(h) = L(zf'(z)/f(z» +
L(zg'(z)/g(z» = fi(f) + fi(g). Similarly, fi(f/g) = fiU) - fi(g).

For some integer p, there exists a polynomial P such that P(z) = zpf(z).
Then fi(P) = ii(zP) + fi(f) = pfi(z) + fi(f) = P + ii(f). From Theorem 1,
fi(f) is the integer fi(P) - p.

For t E [0, 1], z E B, set ht(z) = h(t, z) = (1 - t)f(z) + tg(z). Under the
hypothesis of 3, for all such t and z,

I h(t, z)1 ~ If(z)1 - t Ifez) - g(z)1 ;? If(z)1 - Ifez) - g(z)1 > 0.

For t E [0,1], z E B, set (/>t(z) = (/>(t, z) = zht'(z)/ht(z). Then (/>o(z) = zf'(z)/f(z)
and (/>1(Z) = zg'(z)/g(z) for z E B. For t E [0, 1], set wet) = fi(h t) = L(z(/>iz».
Since L is a bounded linear operator, w is continuous. Since wet) is an integer,
w is a constant and fi(f) = w(o) = w(l) = fi(g).

THEOREM 3. Let fE C'(B). Then there is a unique integer n(f) (the
topological index ofI) such that PET' and Ifez) - P(z)I < 4-1 If(z)/ .for
all Z E B imply nU) = fi(P).

Proof Let a = IIfllmin > 0. By the Stone-Weierstrass theorem, there
exists Q E T such that II Q - .fll < a/4. Set nU) = fi(Q). For all Z E B,
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1 Q(z) - f(z)[ < 4-1a ~ 4-1
I f(z)l. Now Q E T', since, if for some z E B,

Q(z) = 0, we would have 1 f(z)1 = I Q(z) - f(z)1 < 1 f(z)l·
Now for zE B, 4-1 If(z)[ > If(z)1 - I Q(z)1 and so, [ Q(z) I > (3/4)1 f(z)l;

thus, if PET' and I fez) - P(z)1 < 4-1 If(z)1 throughout B, then

I P(z) - Q(z)1 ~ I P(z) - f(z)1 + [f(z) - Q(z)1
< 4-1 If(z)1 + 4-1 I f(z)1 < (3/4) 1f(z)1 < Q(z).

From Theorem 2, fi(P) = n(Q) = n(f).

THEOREM 4. For f, g E C(B):

1. n(fg) = n(f) + neg) and n(f/g) = n(f) - neg)·

2. I fez) - g(z)1 < I f(z)[ for all z E B implies n(f) = neg)·

Proof Let P, Q E T' be such that for all z E B,

I P(z) - f(z)[ < 9-1 If(z)1 and [ Q(z) - g(z)1 < 9-1
1 g(z)l·

Then for all zE B, 9-1 1g(z) I > I Q(z)1 - I g(z)1and [ Q(z)[ < (10/9) Ig(z)[;
thus

I P(z) Q(z) - fez) g(z) I ~ I P(z) Q(z) - Q(z)f(z)1 + I Q(z)f(z) - fez) g(z) I
~ (10/9) 1g(z) I . 9-1 If(z)1 + 1 f(z)1 . 9-1 Ig(z)[

= (19/81) I f(z)[ . 1g(z) I < 4-1 I fez) g(z)l.

Hence, from Theorem 3, n(fg) = n(PQ), n(f) = n(P), neg) = n(Q). From
Theorem 2, n(PQ) = n(P) + n(Q). Thus,

n(fg) = n(PQ) = n(P) + n(Q) = n(f) + neg).

Also n(f) = n(g(f/g)) = neg) + n(f/g) and, so, n(f/g) = n(f) - neg).
Assume now that for all z E B, I f(z)1 - 1fez) - g(z) I > o. Set

a = 3-1 111fl - If - g Illmin > O. Then If(z) - g(z) I ~ If(z)1 - 3a for
all z E B. Choose P, QE T' such that liP - fll < min(a, 4-1 1Ifllmin),
II Q - gil < min(a, 4-1 II g Ilmin). Then from Theorem 3, n(P) = n(f) and
n(Q) = neg). Thus, for every z E B, a> Ilf - P II ;;?- If(z)1 - I P(z)1 and
If(z)[ - a < I P(z)I; hence

I P(z) - Q(z)1 ~ I P(z) - f(z)1 + Ifez) - g(z)1 + Ig(z) - Q(z) I
~ II P -fll + [If(z)1 - 3a] + II Q - gil
< a + [[f(z)1 - 3a] + a = If(z)1 - a < I P(z)[.

From Theorem 2, n(P) = n(Q), and thus n(f) = n(P) = n(Q) = neg).
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Let 1, g E C'(B). We recall that f is homotopic to gin C'(B) (f~ g) if
there exists a continuous function h on [0, 1] X B into K - {a} such that
for all z E B we have ho(z) = h(O, z) = 1(z) and h1(z) = h(l, z) = g(z).

THEOREM 5. Let 1, g E C'(B) and let f ~ g. Then n(f) = n(g).

Proof Let h be a continuous function on [0, 1] x B into K - {a} such
that ho = f and hI = g. Then lX = min{1 h(t, z)l; °:(; t :(; 1, z E B} > 0. Let
o> ° be such that II h s - ht II < lX whenever s E [0, 1], t E [0, 1] and
I s - t I < o. For such sand t, since 1hs(z) - hb)1 < lX :(; I ht(z)1 for all
z E B, we have, from Theorem 4, n(hs) = n(ht). Thus, by suitably subdividing
[0, 1], we conclude that n(f) = n(ho) = n(h1) = n(g).

THEOREM 6. !ffE C'(U), then n(f) = 0.

Proof For t E [0,1], z E B, set h(t, z) = 1(tz). Then h1(z) = h(l, z) = 1(z)
and ho(z) = h(O, z) = 1(0) for all z E B. Hence, from Theorem 5,
n(f) = n(h1) = n(ho) = L(zho'(z)jh(z» = L(O) = 0.

3. CONTINUITY OF THE DERIVATIVE

THEOREM 7. Let fE C(U) be differentiable at Zo E U, and let 1'(zo) ¥= 0.
Then there exists 0, 0 < 0 < 1 - I ZO I, such that:

1. z E Uz (0), z =I- Zo imply 1(z) =I- 1 (zo)'o

2. H = 1(Uz (0» contains a disc about 1(zo).
o

Proof Let °< 'Y/ < 2-1 11'(zo)l. Then there exists 0, 0< 0 < 1 - I ZO I,
such that for z E V = Uz (0) - {zo}, we have

o

I[f(z) - 1(zo)] . (z - ZO)-1 - 1'(zo)I < 7].

Whence, for z E V,

7] I z - Zo I > 11(z) - 1(zo) - 1'(zo)(z - zo)[

;? 11'(zo)1. 1z - Zo I - 11(z) - 1(zo)1

> 27] I z - Zo 1- 11(z) - 1 (Zo)1,

so that 11(z) - f(zo) I > 7] I z - Zo I > 0; thus 1(z) ¥= 1(zo)·
Let lX E U('Y/0) and set h(z) = 1(zo + zo) - 1(zo) - lX for z E U. Then,

for z E B,

Ih(z) - 1'(zo) zo I = 11(zo + zo) - 1(zo) - lX - 1'(zo) zo I
:(; I1(zo + zo) - 1(zo) - 1'(zo) z8 I + I ex I
:(; 1') I zo I + I lX I :(; 7] I zo I + 7]0 = 27]0 < 11'(zo) z8 I.
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Hence, from Theorem 4, n(h) = n(f'(zo) DZ) = n(f'(zo) D) + n(z) = 1. From
Theorem 6, h rf. C(V), and thus there exists an x E V such that hex) = O.
Whence f(zo + XD) - f(zo) - cx = 0 and cx + f(zo) = f(zo + XD) E H. Thus
Vf(z ,(7JD) c::; H.o

THEOREM 8 (see Whyburn [5]). Let fE C(V) and let 1'(z) exist and be
zero throughout a set V c::; V. Then f (V) has zero planar measure.

THEOREM 9. Let D be a countable subset of V and letfE C(V) be differen­
tiable throughout V-D. Then for every z E V, [f(z)1 ~ M = Ilfll.

Proof Assume the contrary. Then for some Zo E V - D, I f(zo)[ > M.
Set cx = f(zo)' Let 0 < c < 2-1(1 cx I - M), c =F 1'(zo), and set fo(z) =
fez) + cz for every z E V. Then fo'(zo) oF 0, Mo = lifo II ~ M + c, and
Ifo(zo) I = I cx + cZo I> I cx 1- c > M + C? Mo. Set CXo =fo(zo) and let
o< D< I CXo I - Mo. Then So = f-1(Va (D) (If(V)) is a neighborhood of zo.o
By Theorem 7,j(So) contains a (nonempty) open set W.

Set V = {z E V - D;fo'(z) = O}. By Theorem 8, foW) has zero planar
measure. Since fo(D) is countable, A = foW) U fo(D) has zero planar
measure and, thus, W - A is not empty. Let fJ E W - A. Then, for every
x E H = fo1(fJ), fo'(x) oF O. By Theorem 7, the points of H are isolated.
Since H is closed, it is finite. Let Zl ,... , Zk be the (distinct) points of H, set

and

O(z) = [fo(z) - fJ]/[(z - Zl) ... (z .- Zk)] for ZE V - H,

O(Zi) = fO'(Zi)/[(Z - Zl) ... (z - Zi-1)(Z - Zi+l) ... (z - Zk)]

for i = 1,... , k.

For such an i, fO'(Zi) oF 0 and, thus, 0 E C(V). From Theorems 1,4, and 6,

k

n(fo(z) - fJ) = n(O(z)(z - Zl) ... (z - Zk)) = n(O) + L n(z - Zi) = k > O.
i~l

For t E [0, 1], z E B, set h(t, z) = (l - t)fo(z) - fJ. Then

I CXo I - I fJ I ~ I CXo - fJ I < D< I CXo I - Mo and I fJ I - Mo > 0;

thus Ih(t, z)1 ? I fJ I - Ifo(z) I ? I fJ I - Mo > 0 for t E [0,1], z E B. But
then, from Theorem 5, n(fo(z) - fJ) = n(ho) = n(h1) = n(fJ) = O.

THEOREM 10. Let D> 0, set H = V(l + 0), and letfE C(H) be differen­
tiable throughout V(l + D). Then l' is continuous at O. Thus differentiability
of a function in an open subset of K implies continuity of the derivative there.
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Proof Let YJ > O. Then there exists 00 , 0 < 00 < 0, such that s, t E H,
Is - t I < 00 imply If(s) - f(t)1 < YJ/2. Let x E U(oo). For every zED, Z 7'=- 0,
set h,,(z) = [f(x + z) - f(X)]Z-l - [fez) - f(O)]Z-l. Let h,,(O) = rex) - 1'(0).
For each z E B, I(x + z) - z I < 00 and, hence, I f(x + z) - f(x)1 < YJ/2;
thus, by Theorem 9,

Il'(x) - 1'(0)1 = I h",(O) I :( II hI)) II
= max{1 f(x + z) - f(x) - fez) + f(O)I; z E B}

:( max{1 f(x + z) - f(z)l; z E B} + If(x) - f(O) I
< (YJ/2) + (YJ/2) = YJ.

Similar arguments were used by Porcelli and Connell [3], and Read [4]
to obtain power series expansions, etc. Two further developments employing
the Stone-Weierstrass theorem were given by the present author, [I] and [2].

4. FURTHER DEVELOPMENT OF THE THEORY

In this section we study the fundamental homotopy group of K - {O}
and the relation between the local and the global degrees of a mapping.

THEOREM 11. Let J, g E C'(B). Then 1 '" zq, where q = n(f). Moreover,
n(f) = n( g) implies1~ g.

Proof By Theorem 3, there exists an 10 E T' such that l.fo(z) - f(z)[ <
4-1 If(z)1 for all z E B, and n(fo) = n(f). Setting h(t, x) = tfo(z) + (1 - t)f(z)
for t E [0, I], z E B, we have that h(t, x) 7'=- 0 for all t E [0, I], x E B, and,
hence, 10 '" f

For some integer p, there exists a polynomial P such that P(z) = zPJo(z)
for z E B. There exist A( 7'=-0), Zl , ... , Zk , Zk+l ,... , Zk such that P(z) =o _
A(z - Zl) ... (z - Zk ), and such that Zl ,... , Zk E U and Zk+l ,... , Zk E K - U.o 0

For t E [0, 1], z E B, set

ht(z) = h(t, z) = A(z - tz1) ... (z - tzk) . (tz - Zk+l) ... (tz - Zk
o
) z-p.

Then for z E B,h1(z) = .fo(z) and ho(z) = azk - P , where a = A(-Zk+l) ... (-ZkJ
Now, for z E B, t E [0, 1], x E U, Y E K - D, we have

I z - tx 1~ 1 - I x I > 0,

and

I tz - y I ~ Iy I - 1 > O.
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Thus, h(t, z) =1= °for all t E [0, 1], z E B. Hence,f '" fo = hI '" ho = azq '" zq,
where q = k - p; from Theorem 5, n(f) = n(azq) = q. Similarly, g '" zn(g),
and hence, if n(f) = neg), we have f '" zn(f) '" g.

By Theorem 4, n is a homomorphism of the multiplicative group C(B)
onto the additive group Z of integers. By Theorems 5 and 11, forf, g E C(B),
n(f) = neg) if and only if f '" g. Thus the family M of homotopy classes
of C(B) is isomorphic to Z.

This result is analogous to the theorem stating that the fundamental
homotopy group G of K - {a} is isomorphic to Z. The latter follows readily
from the first if one shows that the operation of multiplying homotopy
classes of G is independent of whether it is derived from pointwise multipli­
cation of functions or from juxtapositioning of functions. The last statement
follows from the fact that, by the first result, all homotopy classes of G are
determined by functions of the form e2PiS, p E Z, °~ B~ 1.

AnfE C((J) will be called admissible if fez) =1= °throughout B and if all
zeros off in U are isolated.

THEOREM 12. Let f E CeU), and let Zo E U be an isolated zero off Then
there exists a unique integer p = fL(f, zo) such that if°< p ~ 1 - I Zo I and
if z E Uzo(p) - {zo} implies fez) =1= 0, then p = n(f(zo + pz».

Proof Let p be as in the theorem, and let a satisfy, too, the same condi­
tions. For t E [0, 1], z E B, set ht(z) = h(t, z) = f(zo + [(1 - t) p + tal z).
Then h(t, z) =1= °whenever t E [0, 1] and z E B. Therefore, f(zo + pz) =

ho '" hI = f(zo + az), and from Theorem 5, n(ha) = n(hp).

fL(f, zo) is the (local) degree off at Zo .
For an admissible f E C(U), we set fL(f) = Lf(zo)~O fL(f, zo). The integer

fL(f) is the (glocal) degree off in U.

THEOREM 13. Letf(E CeU» be admissible. Then fL(f) = n(f).

Proof Let Zo be a zero off in U and set p = fL(f, zo). We shall modify j
in a neighborhood S of Zo in such a way that on some subneighborhood
So of S, f will take the form A(z - zo)P if p ;;:: 0, and the form A(z - zo)-P
if p < 0, where A =1= 0.

For some 0, °< 0 ~ 1 - I Zo I, z E Uz (0) - {zo} implies fez) =F o. Nowo
p = n(f(zo + oz», and by Theorem 11 there exists a continuous function ([J

on [0,1] X B into K - {o} such that <P(1, z) = f(zo + oz) and ([J(O, z) = zP,
for z E B. Set V = Uz (0) - Uz (0/2), ando 0

B(z) = <P(2 I z - Zo I0-1 - 1, (z - zo) I z - Zo 1-1) for z E V.

Then, for z E Bz (0),
o

B(z) = ([J(1, 0-I(Z - zo» = fez),
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and for Z E Bz(812),
o

LELAND

8(z) = ct>(0, 2(z - Zo) 8-1) = [28-1(z - zoW

= 2P8-p(z - zo)P = 2-p8p(z - zo)-p.

For z E U, we define .fo(z), a modification of1 (z), to be:

1(z), if z if: Uzo (8);

8(z), if z E V;

(z - zo)P2P8-p,

(z - zo)-P2-p8p,

if p ~ 0

if p < 0

and

and

Z E Uzo(812);

z E Uz/812).

If p ~ 0, then /L(fo , zo) = n(zP) = p = /L(f, zo). If p < 0, then /L(fo , zo) =
n(z-P) = n(zP) = p = /L(f, zo). Iff vanished also at some ZI (E U, =1= zo), we
modifyfo in a neighborhood of ZI ,as we did above forfand zo. We continue
in this fashion, corresponding to all remaining zeros of f in U. As a result
we obtain an admissible function g E C(U), having the following properties:

(1) g(z) = 1(z) throughout B and, consequently, n(f) = n(g).

(2) If z EO U, then g(z) = 0 if and only if1(z) = O.

(3) /L(f, z) = /L(g, z) whenever z E U and1(z) = O.

(4) There exists go E C'(U) such that, for every z EO U, g(z) =
go(z) . IIf(x)~o'P~/L(g.x)?;oo(z - x)P IIf(x)~o.1J~/L(g.xko(Z - x)-p.

Let x EO U. Then y = X-I E K - U, and from Theorem 3, n((z - x)P) = p
and n(z - y) = O. By Theorem 4, ifp < 0, n((z - x)-P) = -p . n(z - x) =
-P . n((y - z)/(xz)) = p. By Theorems 4 and 6,

n(f) = n(g) = n(go) + L n((z - x)P)
flx)~O.p~/L(g.x) ?;oO

+ L n((z - x)-P) = L /L(f, x) = /L(f).
f(x)~O.1J~(g.x)<0 f(x)~O

COROLLARY (a "Rouche theorem"). Let f, g (E C(U)) be admissible, and
let I1(z) - g(z) I < 11(z)1 throughout B. Then /L(f) = /L(g).

Indeed, by Theorems 13 and 4, /L(f) = n(f) = n(g) = /L(g).
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